A comparison of discrete and continuous output modeling techniques for a pseudo-2D hidden Markov model face recognition system

نویسندگان

  • Frank Wallhoff
  • Stefan Eickeler
  • Gerhard Rigoll
چکیده

Face recognition has become an important topic within the field of pattern recognition and computer vision. In this field a number of different approaches to feature extraction, modeling and classification techniques have been tested. However, many questions concerning the optimal modeling techniques for high performance face recognition are still open. The face recognition system developed by our research group uses a Discrete Cosine Transform (DCT) combined with the use of Pseudo 2D Hidden Markov Models (P2DHMM). In the past our system used continuous probability density functions and was tested on a smaller database. This paper addresses the question if there is a major difference in recognition performance with discrete production probabilities compared to continuous ones. Therefore the system is tested using a larger subset of the FERET database. We will show that we are able to achieve higher recognition scores and an improvement concerning the computation speed by using discrete modeling techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo 2D Hidden Markov Model Based Face Recognition System Using Singular Values Decomposition Coefficients

A new Face Recognition (FR) system based on Singular Values Decomposition (SVD) and pseudo 2D Hidden Markov Model (P2D-HMM) is proposed in this paper. The state sequence of the pseudo 2D HMM are modeled independently which gives superior results when compared to regular 2D HMMs. As a novel point presented here, we have maintained a limited number of quantized Singular Values Decomposition (SVD)...

متن کامل

Improved Face Recognition Using Pseudo 2 - DHidden

A face recognition system based on 2-D DCT features and pseudo-2D Hidden Markov Models is presented. The system achieves a recognition rate of 99.5 % on the Olivetti Research Laboratory (ORL) face database. This recognition rate is much better than the recognition rate of a previous pseudo 2-D HMM approach. It represents also the best rate ever reported on this database. In fact, only one singl...

متن کامل

Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images

ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that                                                      facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...

متن کامل

A new hybrid approach to large vocabulary cursive handwriting recognition

This paper presents a novel hybrid modeling technique that is used for the first time in Hidden Markov Modelbased handwriting recognition. This new approach combines the advantages of discrete and continuous Markov models and it is shown that this is especially suitable for modeling the features typically used in handwriting recognition. The performance of this hybrid technique is demonstrated ...

متن کامل

Multiple codebook semi-continuous hidden Markov models for speaker-independent continuous speech recognition

A semi-continuous hidden Markov model based on the multiple vector quantization codebooks is used here for large-vocabulary speaker-independent continuous speech recognition. In the techniques employed here, the semi-continuous output probability density function for each codebook is represented by a combination of the corresponding discrete output probabilities of the hidden Markov model and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001